FGF Signaling Regulates the Number of Posterior Taste Papillae by Controlling Progenitor Field Size

نویسندگان

  • Camille I. Petersen
  • Andrew H. Jheon
  • Pasha Mostowfi
  • Cyril Charles
  • Saunders Ching
  • Shoba Thirumangalathu
  • Linda A. Barlow
  • Ophir D. Klein
چکیده

The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP). Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry) genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK) signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1(-/-);Spry2(-/-) embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Follistatin modulates a BMP autoregulatory loop to control the size and patterning of sensory domains in the developing tongue.

The regenerative capacity of many placode-derived epithelial structures makes them of interest for understanding the molecular control of epithelial stem cells and their niches. Here, we investigate the interaction between the developing epithelium and its surrounding mesenchyme in one such system, the taste papillae and sensory taste buds of the mouse tongue. We identify follistatin (FST) as a...

متن کامل

The Formation of Endoderm-Derived Taste Sensory Organs Requires a Pax9-Dependent Expansion of Embryonic Taste Bud Progenitor Cells

In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain ...

متن کامل

Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs.

Sensory ganglia that innervate taste buds and gustatory papillae (geniculate and petrosal) are reduced in volume by about 40% in mice with a targeted deletion of the gene for brain-derived neurotrophic factor (BDNF). In contrast, the trigeminal ganglion, which innervates papillae but not taste buds on the anterior tongue, is reduced by only about 18%. These specific alterations in ganglia that ...

متن کامل

Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.

Taste buds, the taste sensory organs, are conserved in vertebrates and composed of distinct cell types, including taste receptor, basal/presynaptic and support cells. Here, we characterize zebrafish taste bud development and show that compromised Fgf signaling in the larva results in taste bud reduction and disorganization. We determine that Fgf activity is required within pharyngeal endoderm f...

متن کامل

Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury

Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011